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THE STABILITY OF A SHEAR MODEL IN WHICH PERTURBATIONS 
MOVE WITH THE MEAN LOCAL FLOW

Earl E. Gossard
Cooperative Institute for Research in the Environmental Sciences

University of Colorado 
Boulder, Colorado 80303

ABSTRACT

This report is a companion to an earlier report in which the rela
tionship between the variances of temperature and vertical velocity 
and their dependence on the height gradient of temperature was exa
mined by solving the equations of motion, continuity and energy for a 
special linearized model. That report led to the conclusion that_ i 2 20Q g d0/dz « 0 /w where 0 and w are the potential temperature and 
vertical velocity perturbations, 0 is the unperturbed potential tem
perature# This report continues tfie analysis of the above model and 
examines the morphology of the perturbations and their dynamic stabi
lity# It is shown that the value of Richardson Number for "just 
unstable" conditions tends to 1/8 instead of the value of 1/4 found 
for height-phase-coherent disturbances.

INTRODUCTION

Remote sensing systems such as acoustic sounders and radars usually depend 

on what is commonly called Bragg Scatter from turbulent inhomogeneities in the 

refractive index of the medium. The power backscattered is proportional to the 

power at the Bragg scale in the spectrum of the refractive index. For back- 

scatter the Bragg scale is one-half the wavelength of the radar. Furthermore, 

the velocity variance in the medium is a most important factor in the width, or 

2nd moment, of the Doppler spectrum. These quantities, potentially measurable 

by the radars, are of great interest if they can be related to the mean gra

dients with height of properties, such as temperature, that are of interest to 

the meteorologist. Efforts in this area have in the past been directed toward 

the use of various turbulence relationships derived from similarity theory and
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the energy and variance budget equations (e.g., Ottersten, 1969; Gage et al., 

1980; Gossard et al., 1982).

In a recent report by Gossard and Frisch (1986), an alternative approach was 

used in which the linearized equations of motion, continuity and energy were 

solved for a relationship between mean temperature gradient and the variances of 

temperatue and vertical velocity for a model in which it was assumed that the 

perturbations were not coherent with height, but in fact moved on the average 

with the wind at the height where they were embedded. Such a model is in 

contrast with coherent models of deep gravity wave systems (such as lee waves 

locked to a topographic feature) in which the wave crests and troughs vary in a 

phase coherent manner with height. The results, relating the variances of tem

perature and vertical velocity to the mean temperature gradient, were shown to 

be consistent with what would be inferred from the turbulent flux equation if 

the contribution of the pressure covariance terms was neglected.

MORPHOLOGY AND KINEMATICS

From Eq. (13) of TM ERL WPL 134, we note that

. nk,2 in (1 - Pr) + —~] - —z Ri (la)
s _ o^___J_ f kq2 nkl (1 f<o^~

u ' " K u ’ _ " 2 u • (1 " Pr) + 2p / 4 *u ' 
oo |_o ff J o a a

where v and k are the eddy coefficients of viscosity and thermal conductivity

respectively, a2 = k2 + £2 + n2 = m2 + n2 where k, fc, n are the wavenumbers in

the x,y,z directions, x,y,z are the two horizontal and the vertical axes respec-

tively, u * = 9u /3z taken to lie in the x,z plane, u is the mean horizontal

wind, Ri is the Richardson Number equal to N2/u ’2 where N is the Vaisala-Brunt

frequency (g/e)(d0/dz) and 9 is the potential temperature. The turbulent
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Prandtl Number Pr = v/k and the Stokes Operator D/Dt = 3/8t + u 3/3x 4- v 3/3y

In examining the form of the perturbations and their stability, it is useful 

to consider special cases that are simple enough for analytical study. Consider 

the case of Pr = 1. Then

2 2 2 2 rs ko nk,2 Ink ra
[— -~ + 721 •*—------2 Rl •

o o 2a a a
(lb)

2
Furthermore, if <o'u0' negligibly small compared with s/uQf,

u 1 u fn2 + — kn 4* m2 [Ri(—)2 4- l] = 0 (lc)

where we note that the center term changes sign with u^1 or n. Then, for n pure 

real, the real part of s is

, u f kn 1 o
Sr "22 2

n 4- m
(2a)

and the imaginary part of s, say s^ = w, is given by

20) =
m

2 2 n + m
N'2 1 f 2 . 2 - T u ' k 4 o

n, 2 A 2,2(n 4- m )
(2b)

in agreement with (13d) of TM ERL WPL 134. Therefore, for this special case, n 

is given as a function of the intrinsic frequency w by

.2 r,.
2 m2 . N2 1 k2 uo

n 2 2 2 + 4 2 2 “
a) m a)

,2
m' lk o 4, N4 (2— 9 + a 9 9) — m (1~ 9)* (3)2 4 2 2co m a) 0)

Thus the condition for n to be pure real is that the 4- sign be chosen and that

1 < N2/a)2 < 2 (k2/m2)(uo’2/a)2) . (4a)

When uQf = 0, the condition for n > 0 becomes the gravity wave condition

N2/uj2 - 1 > 0 . (4b)
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Written in terms of Richardson Number, Eq. (3) becomes

2 , u
iL_ = I (2 - -2

2 2 K m a)

,2
-Ri + \\ 

0)

.2 ,2

m
-1

4(1 -

1 ^1 oRi + -r

>(5)

2 2 2 2The plots of n /m = /L , from Eqs. (3) and (5), are shown in Fig. 1 for

various shear conditions (a)2/u ,2) where n2/m2 vs. N2/<d2 are the dashed curves
o

and n2/m2 vs. Ri are the solid curves. For given <o2/u ,2 the ratio of L 2/L 2
o v h

 clearly decreases as N 2 /a) 2 and Ri increase.

1 1.5 0^2 2.0 3.0

Figure 1. Plot of n /m = L /L 2 vs. N2/a)2 (dashed curves) and Richardson
Li v 2 2

Number (solid curves) for various shear conditions (a) /uQf ) for a model in 
which the eddy viscosity and eddy conductivity are negligibly small and in which 
the perturbed features move with the local mean wind. Note that the larger Ri 
and N2/o)2, the larger is L^2/!^2.
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When s is real, there is no realistic condition for which n is real for this
o 9 9simplified model unless N is negative, in fact, unless N /s < -1.

Note that the functional relation (lc) depends on the sign of n (and the

sign of u '); that is, 
o

ri
k 2

[-i + + 1) ] • (6)
o

Thus, choosing u 1 positive, n/k is positive when the plus sign on the radical 

is chosen and negative (say n/k = p/k) when the negative sign is chosen. We are 

interested in standing "wave" interference patterns in the vertical plane con

taining the mean wind and its shear vector, so we add the two solutions. As a 

simple example we choose the two dimensional case with i = 0.

We have formulated the problem for an observer drifting with the local mean

wind, and have chosen D/Dt = 3/3t + uq(z) 3/3x = - s to be invariant with
height. Therefore, for the drifting observer,

tt ttW = WA e e •A
  -st i(kx + nz)

For example, choosing the case when s is pure imaginary, (say s = ito) 

i(kx + nz - tot)
W = WA e A

and to is therefore the intrinsic frequency noted by the drifting observer. Its 

formal relationship to the frequency relative to a fixed point, cr(z) = i3/3t, is

a = a) + k uo* z

so that, relative to the fixed reference system,

TT TT i(kx + nz - at) TT i[kx + nz - (to + k u 1 z)t]W = W^ e = W^ e o

where we have chosen to analyze the case in which to is independent of height.
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Thus, in general

i(kx - k u 1 zt + nz) i(kx - k u 1 zt + pz)T7 TT -st r o , o iW = W^e[e + e J . (7)

Writing (6) symbolically as

f = - B + A , f = - B - A 
k k

where B = 1/2 u '/s and A = 1/2 u '/s[l - 4(m/k)2(s/u ')2(Ri u ,2/s2 + l)]l/2 
o o o o

= B[1 - (m/k)2 (1/B2) (Ri uq,2/s2 + 1)]. So (7) becomes

ik(x - u 1 zt - Bz + Az) ik(x - u 1 zt - Bz - Az)
TT TT -str o , o iW = e [e + e

and

ik[x - u fz(t + l/2s)]
W = 2 WA e S cos kAz R e ° •

A

s tPlots of (W/W^) e are shown in Fig. 2. Actually, the two interfering "wave 

forms" are plotted because we believe this plot is rather more revealing than

Uot =7TUot = 0 Uot =tt/2

Figure 2. Morphological display of the patterns of interfering waveforms of 
which the perturbations are composed. Three horizontal frames are successive 
times in increments of one radian of Four heights are increasing incre
ments of tt/2 Akz.
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the combined value of W. The interpretation in terms of wave patterns is to be 

avoided, since the solutions apply to Fourier components within the perturbation 

ensemble. In Figure 2 four different heights are shown separated by intervals 

of tt/2 radians of AkZ. Three successive times are shown as the three frames on 

the horizontal axis, separated by u^'t intervals of one radian. The displace

ment profile u ft is shown in each frame, o

STABILITY CONDITIONS: THE MOST UNSTABLE SCALES

For the case of tc = 0, Pr = 1.0, it was found above that for n real and s
2real a necessary condition for instability was N <0. We now examine the more 

general case. From Eq. (11) of TM ERL WPL 134 it was found that

icv * (v + k) o4s + o2s2 - knu Vo2 + knu 's + m2 N2 = 0 *
o o (8)

We consider first the case for which a reversible (oscillatory component) 

exists. Let n, m and k be real, but let s be complex; say s = sr + is^. Then 

the imaginary terms give

sisr * j [(ic + v)(m2 + n2) - kn u0',(m2 + n2) *] s^. (9)

We seek the most unstable value of m, for given n, so let

9s , , kn u ' 2m . n u '
0 - 2 (< + v) 2m + 2 _2 ^ 21 " 2 _2 x .2 9m3m *• (m* + n*)“ “ m“ + n

or, for the 2 D case, for which m2 = k2 and 3k/3m ■ m/k = 1,

u 2k(n2 + k2)
n(n2 - k2)(k + v)o 

Substituting in (9), we find
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2 1 „ 2 . 2w . wit2 - 3k2,
8f - j (k + n )(< + v)[—2---- 2~]

n - k
o oWhence we conclude that k /n « 1/3 for marginal stability (sr 0) when s is

complex.

On the other hand, when s is pure real ue choose the s^O solution 

o-f (9) and the condition 3s/3d » 0 applied to Bq. (8) gives

m2N2 = -3 xviAn2 + 2(v + k) so2m2 - m2s2 + i ~ u ' <m2o2
Z m o

+ knu '<m2 - i n m u 's ■££ (10)
o 2 o 3m

where 3k/3m - m/k. Substituting (10) for m2N2 in (8) and letting s = 0, we find 

the neutral stability condition.

Two cases are of particular interest: (A) two dimensional disturbances for 

which m = k, and (B) three dimensional disturbances that are symmetrical in the 

horizontal plane for which k2 = 42 = 1/2 m2. For case B, we find

1 "o' _ „ m n2 n2 n2 -1 _ l it
— —---j " 2 n (1 + (“ "2) ( 2 " 0 = a 2
/2 k Pr a mm m a

(ID

where we have defined the turbulent Prandtl Number Pr * v/ie. For case A the

expression is the same except k is substituted for m, and a ■ 1 instead of

a = /2. M2 = u */ic Pr is an inverse length squared. Equation (11) gives the 
o

most unstable disturbance geometry (i.e., n/m) for any given wind shear con-
2 2dition. When the shear is zero, it gives the Rayleigh condition n - 2 m for 

the most unstable geometry of "just unstable” convection in a windless fluid. 

However, there is a great conceptual difference in the models, since convection 

filaments and cells are coherent with height through the fluid.
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(12)-TT77- <*+4‘2 <4 - - ir‘ -11

2 2which, for n = 2m , gives the Rayleigh convection criterion of -3.

Because shear is a critical factor in our problem, the Richardson Number is 

an important criterion. Rewriting (12) in terms of Ri = N2/uQf2 and applying 

the geometric constraint imposed by (11) we find

2 2 2 4
pi ?r - 1 rn n , n x a a 1Rl Pr 2 TT ~ (1 + ~4 J ‘

M m M
(13)

The most unstable geometry (n/m) for the onset of instability is shown in Fig. 3 

as a function of wind shear (uq'), static stability (N2) and Richardson's Number 

(Ri). For the two cases A and B, the quantity "a” is 1 or /2 respectively.

3 Dimensional
(Horizontal
Symmetry)

cr‘ = m + n
a =V2”

k Pro-

2 Dimensional _

a = 1.0

Pr kV

Figure 3. Non-dimensional neutral stability conditions relating geometry 
(Ly/L^), to Ri, N2 and wind shear (u^'). L is the length scale in the vertical 

direction; is the horizontal length scale.
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If (11) is inserted into (13) it is found that

2n 2n
i 21 mRi Pr

2 2,, n wn »(1 + —)(— - 2)
(14)

m m

and, as ra/n > 0, we see that

Ri Pr + 1/8 (15)

in the limit of large positive shear. At the other extreme, as n/m ■> 0,

Ri Pr > 0. It is possibly significant that precise measurements of Ri reported 

by Gossard (1986, Fig. 5) show a minimum substantially less than 1/4—in fact 

about 1/8 during the time interval 2, zone IV defined in Fig. 2 of that report. 

Zone IV was a strongly mixed, positively sheared zone shown in Fig. 5 of Gossard 

et al. (1985).
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